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Ecological momentary assessment studies usually produce intensively mea-
sured longitudinal data with large numbers of observations per unit, and
research interest is often centered around understanding the changes in vari-
ation of people's thoughts, emotions and behaviors. Hedeker et al developed
a 2-level mixed effects location scale model that allows observed covariates as
well as unobserved variables to influence both the mean and the within-subjects
variance, for a 2-level data structure where observations are nested within sub-
jects. In some ecological momentary assessment studies, subjects are measured
at multiple waves, and within each wave, subjects are measured over time. Li and
Hedeker extended the original 2-level model to a 3-level data structure where
observations are nested within days and days are then nested within subjects,
by including a random location and scale intercept at the intermediate wave
level. However, the 3-level random intercept model assumes constant response
change rate for both the mean and variance. To account for changes in variance
across waves, as well as clustering attributable to waves, we propose a more com-
prehensive location scale model that allows subject heterogeneity at baseline as
well as across different waves, for a 3-level data structure where observations
are nested within waves and waves are then further nested within subjects. The
model parameters are estimated using Markov chain Monte Carlo methods. We
provide details on the Bayesian estimation approach and demonstrate how the
Stan statistical software can be used to sample from the desired distributions
and achieve consistent estimates. The proposed model is validated via a series
of simulation studies. Data from an adolescent smoking study are analyzed to
demonstrate this approach. The analyses clearly favor the proposed model and
show significant subject heterogeneity at baseline as well as change over time,
for both mood mean and variance. The proposed 3-level location scale model can
be widely applied to areas of research where the interest lies in the consistency
in addition to the mean level of the responses.
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1 INTRODUCTION

Modern data collection procedures, such as ecological momentary assessments (EMAs), allow researchers to study out-
comes with high volatility by repeated sampling of subjects' behaviors and experiences in real time and subjects' natural
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environments.1 Typically, these procedures involve self-reported data collection from individuals over the course of hours,
days, and weeks, thus yield relatively large numbers of observation per subject.2 A particular interest in EMA studies is
to identify factors that affect the within-subject variance of the intensively measured outcomes, in addition to the overall
mean levels.3 Due to the hierarchical nature of EMA data, random subject effects are usually included in statistical mod-
els to account for the correlation among repeated measures for a given subject.4 Hedeker et al5 developed a mixed effect
location scale model that includes an additional random subject effect in the error variance, thus allowing subject vari-
ation in terms of both the mean and variance of the intensively measured outcomes. Random effects in both the mean
and variance model can be useful in distinguishing the residual variation from unobserved subject-level variables, thus
providing more accurate standard errors and valid statistical inference.6

Ecological momentary assessment studies are sometimes conducted at multiple measurement waves, resulting in a
3-level data structure: observations nested within waves and waves in turn nested within subjects.7 For example, a per-
son's mood can be assessed multiple times at each wave and the subject can be followed up at multiple waves. There are 3
possible sources of mood variation for this type of data: variation between subjects, variation within subject but between
waves, and variation within subject within wave. Ignoring any possible sources of variation would lead to misspecifica-
tion of the correlation structure and invalid statistical inference. Li and Hedeker8 proposed a 3-level mixed effect location
scale model that includes random subject and day intercepts for both the mean and within variance of the outcome. Kapur
et al9 proposed a similar Bayesian mixed effect location scale model for multivariate outcomes at one EMA wave. How-
ever, these models assume that subjects change with a constant rate in terms of both mean and variance. This assumption
can be easily violated, especially in psychological and behavioral studies, as subjects almost always exhibit heterogeneous
trajectories across time.10 Using the above mood example, subjects are likely to have different mood variability at baseline,
and over time, some can become more consistent while others become more erratic. Rast et al,11 Leckie,12 and Goldstein
et al13 all presented a 2-level mixed effect location scale model that includes random intercept and slope for both the
location and scale model, allowing for heterogeneous trajectories across time. Therefore, a 3-level model that treats obser-
vations within waves within subjects while accounting for subject heterogeneity at baseline and over time for both mean
and variance will provide a more comprehensive utilization of the data as well as address more specific questions of inter-
est. However, estimation of such general models with relatively large numbers of random effects using likelihood-based
methods can be prohibitive due to computational and numerical complexity.14

In this article, we propose a Bayesian mixed effect location scale model for 3-level data structures, where observations
are nested within waves and waves further nested within subjects. The proposed model extends the conventional 3-level
mixed effect regression model by including random subject intercept and slope as well as random wave intercept for both
the mean and within-subject variance of the outcome. At the mean level, the proposed model allows subjects to have het-
erogeneity in their baseline responses as well as different growth rates over time. Similarly at the variance level, subjects
are allowed to exhibit different variation at baseline and the variation can also change differentially over time. Both the
subject- and wave-level heterogeneity can be explained by observed covariates as well as unobserved variables through
specification of random effects. Furthermore, the random location and scale effects are allowed to be correlated. The pro-
posed model is estimated using a Bayesian approach. Specifically, Markov chain Monte Carlo (MCMC) sampling methods
are used to generate samples from the joint posterior distribution, and parameter estimates and credible intervals are
obtained by summarizing the corresponding distributions.15 We will demonstrate how Stan (an open-source Hamiltonian
Monte Carlo sampler) and the Hamiltonian Monte Carlo algorithm can be used to achieve consistent parameter esti-
mates, and we provide a detailed syntax example in the Supporting Information.16 The model is validated via a sequence
of simulation studies against several reduced models. Finally, the proposed 3-level model is applied to an EMA adolescent
smoking study, where the interest is on identifying risk factors associated with high mood variation as well as exploring
the possible mood trajectories.

2 MOTIVATING ADOLESCENT SMOKING STUDY EXAMPLE

The data that motivate the development of the Bayesian 3-level mixed effect location scale model are from an EMA
adolescent smoking study. In the study, 461 adolescents from 9th and 10th grades were recruited. The average age of
the participants is 15.6, with the minimum being 14.4 and maximum 16.7. They carried handheld devices for 7 days at
each measurement wave, during which they responded to random interviews (∼5 times per day) or event recorded any
episodes of smoking. At each prompt or smoking episode, participants were asked to answer questions, including location,
activities, companionship, mood, and other psychological measurements. The study was conducted at 6 waves: baseline,
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FIGURE 1 Mood assessments: erratic to consistent. (Random subject scale effect estimates are estimated to be (−0.41,−3.64) and
(0.30,−0.25)) [Colour figure can be viewed at wileyonlinelibrary.com]

6 months, 15 months, 2 years, 5 years, and 6 years. Data were collected on age, gender, beep type (smoking event vs ran-
dom prompt), and positive affect (PA) (measure of positive mood). Because of the interest in comparing responses across
waves from random prompts vs smoking events, subjects were included if they were measured on at least 2 waves and
had at least 2 smoking events at each wave, resulting in a sample size of 254 subjects.

Among all the subjects, 51.6% were female, and on average, subjects were followed up at 3 waves with 36 to 51 prompts
(including smoking episodes) per wave during the entire study span. A total of 24 490 random prompts and 8087 smoking
events were obtained, with an approximate average of 96 random prompts and 32 smoking episodes per subject. For the
analyses reported, a 3-level structure of observations (level 1), within waves (level 2), and within subjects (level 3) was
considered.

The outcome is the measure of subjects' PA, which consists of the average of several mood items rated from 1 to 10: I
felt happy, I felt relaxed, I felt cheerful, I felt confident, and I felt accepted by others. Thus, higher PA levels indicate better
mood. The interest is to see whether subjects tend to have higher and more consistent PA after smoking compared with
random prompts. We are also interested in differentiating the between-subject and within-subject between-wave effect
from the within-subject within-wave effect, that is, the effect of smoking when comparing different subjects (between
subject), the same subject at different waves (within subject between wave), and the same subject at the same wave but
different occasions (within subject within wave). Since the 3 variables contain different information in characterizing
subjects' smoking behavior, it is useful to include the decomposed variables in the model and investigate their relative
statistical and clinical significance so that further interventions can be done at that level.7 Investigation into the PA showed
that subjects exhibit different trends across waves in terms of both mean and variability, as shown in Figures 1 and 2.

3 METHOD

Suppose there are k = 1, … ,nij observations nested within j = 1, … ,ni waves, and waves are then nested within i =
1, … ,n subjects. Let yijk denote the outcome for subject i measured at wave j and occasion k. The conventional 3-level
mixed effect model can be expressed as

Yi𝑗k = X⊤
i𝑗k 𝛽 + Z⊤

i𝑗k 𝛾i + V⊤
i𝑗k 𝜈i𝑗 + 𝜀i𝑗k, (1)

where Xijk is the p × 1 vector of regressors (typically including a column of “1” for the intercept), which can contain
subject-, wave-, or occasion-level variables, and 𝛽 is the corresponding vector of regression coefficients. Zijk (usually
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FIGURE 2 Mood assessments: remains consistent or erratic. (Random subject scale effect estimates are estimated to be (−1.09,−2.52) and
(1.36, 1.52)) [Colour figure can be viewed at wileyonlinelibrary.com]

a subset of Xijk) is the vector of regressors for random effect 𝛾 i, and 𝛾 i is the vector of random subject effect, indicating
the influence of individual i on his or her repeated mood assessments. Similarly, Vijk (again, usually a subset of Xijk) is the
vector of regressors for random effect 𝜈ij, where 𝜈ij represents the vector of random wave effect, indicating the influence
of wave j on subject i's repeated mood assessments.

For the EMA adolescent smoking study example, the outcome Yijk is the PA for subject i at wave j and occasion k.
Since we are interested in differentiating the within-subject within-wave effect from the between-subject as well as the
within-subject between-wave effects, we will decompose the occasion-level variable smkijk (1 for smoking event and 0 for
random prompt) into subject-, wave-, and occasion-level variables.

smki =
∑
𝑗

∑
k

smki𝑗k ∕
∑
𝑗

Ki𝑗 , smki𝑗 =
∑

k
smki𝑗k ∕ Ki𝑗 − smki, s̃mki𝑗k = smki𝑗k − smki𝑗 . (2)

Here, Kij is the number of observations for subject i at wave j; smki is the decomposed subject-level variable and represents
the average (proportion) of smoking events for subject i; smki𝑗 is the decomposed wave-level variable and represents the
deviation of average smoking events at wave j relative to the subject-level average smki; s̃mki𝑗k, which is computed as the
deviation of smoking events at occasion k relative to the subject's wave-level average, represents the pure occasion-level
smoking effect adjusted for his or her subject- and wave-level average. All 3 variables will be included in the mean model.
For random subject effects, both a random intercept and a random slope over wave will be included since there is interest
about subject heterogeneity both at baseline and trajectories over time. So Zijk will be two dimensional and consists of a
column of 1 and wave indicator waveij. Correspondingly, 𝛾i =

{
𝛾0,i, 𝛾1,i

}
, with 𝛾0,i being the random subject intercept indi-

cating the influence of subject i on his or her baseline mood and 𝛾1,i being random subject slope indicating the influence
of subject i on how fast or slow his or her mood changes over time. Since our data have a 3-level structure with an inter-
mediate wave clustering, an additional random wave effect should be included. For wave, only a random intercept will
be considered to indicate the possible influence of wave on subjects' repeated mood assessments: Even for the same sub-
ject, the mood can be different at different waves and the difference cannot be fully explained by the observed wave-level
variables. As a result, Vijk will be a column of 1 and 𝜈ij is of dimension 1. Therefore, the mean model for the adolescent
mood study example can be expressed explicitly as

Yi𝑗k = 𝛽0 + 𝛽1 malei + 𝛽2 smki + 𝛽3 smki𝑗 + 𝛽4 s̃mki𝑗k + 𝛽5 wavei𝑗 + 𝛾0,i + 𝛾1,i wavei𝑗 + 𝜈i𝑗 + 𝜀i𝑗k. (3)

The random effects 𝛾 and 𝜈 are referred to as location random effects since they influence the mean or location of the
outcome. Both 𝛾 and 𝜈 are assumed to be normally distributed with constant variance-covariance structure Σ𝛾 and 𝜎2

𝜈

http://wileyonlinelibrary.com
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and independent of each other. The size of the diagonal elements inΣ𝛾 indicates the amount of between-subject variability,
while size of 𝜎2

𝜈 indicates the amount of the within-subject between-wave variability. The random error 𝜀ijk is usually
assumed to be normally distributed with constant variance 𝜎2

𝜀 . However, since 𝜎2
𝜀 represents the amount of variability

that exists within subjects and within waves, by assuming 𝜎2
𝜀 constant, we are assuming that the within variance does

not vary for different subjects or waves. This assumption can be easily violated in practice, especially for psychological
and behavioral studies, where subjects almost always exhibit variation in terms of the consistency in their responses.
One approach to relax this assumption is to additionally model 𝜎2

𝜀 by another mixed effect model through a log-linear
representation

log(𝜎2
i𝑗k) = 𝛼0 + 𝛼1 malei + 𝛼2 smki + 𝛼3 smki𝑗 + 𝛼4 s̃mki𝑗k + 𝛼5 wavei𝑗 + 𝜆0,i + 𝜆1,i wavei𝑗 + 𝜏i𝑗 . (4)

Similar to the mean model 2, the within variance model contains both fixed effects 𝛼 and random effects {𝜆, 𝜏}. In addition
to the observed variables

{
malei, smki, smki𝑗 , s̃mki𝑗kwavei𝑗

}
that can influence the variability of the outcome for certain

subject at certain waves, there can also be unmeasured variables contributing to how consistent/erratic the outcome
measurements could possibly be. Ignoring the unobserved information would lead to invalid inference about the variance
parameters. This motivates the inclusion of random scale effects in the within variance model 4. At subject level, 𝜆0,i
is the random scale intercept and indicates the influence of subject i on his or her mood variability at baseline, and
𝜆1,i, the random scale slope, indicates the influence of subjects on how the variability changes over time. For example,
some subjects may start off with relatively consistent responses (small within variance at baseline), but over time, their
responses become more and more erratic (positive slope on the within variance over wave), while others may follow some
different patterns. This heterogeneity among subjects in terms of the variance trajectories can be captured by the random
subject scale intercept 𝜆0 and slope 𝜆1. At the wave level, only a random scale intercept 𝜏 will be considered to account
for the possible effect of wave on the within variance.

An intuitive visualization of the model mechanics is shown in Figure 3. There are 2 hypothetical subjects: subject 1
has both increasing positive affect and mood variation, while subject 2 has increasing PA but diminishing mood variation
across wave. We can also visualize the wave effect as different waves exhibit different mean as well as variation. The
different patterns suggest different mood trajectories as well as disease prognostics from a psychological perspective,
which our proposed model is able to capture.

There are 6 random effects, consisting both subject and wave levels, in terms of both the mean and within variance of
the outcome. The population distribution of these random effects is similar to the ordinary mixed effects models in that
random subject effects can be possibly correlated but should be independent of the random wave effects. In addition,
the random location effects are allowed to be possibly correlated with the random scale effects, as extreme mean values

FIGURE 3 Visualization of the model mechanics
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are often accompanied with more consistent variance due to ceiling or floor measurement effects. The distributional
assumption for the 6 random effects can be expressed as

⎡⎢⎢⎢⎣
𝛾0,i
𝛾1,i
𝜆0,i
𝜆1,i

⎤⎥⎥⎥⎦
∼ 4

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

𝜎2
𝛾0

cov𝛾0,𝛾1 cov𝛾0,𝜆0 cov𝛾0,𝜆1

cov𝛾0,𝛾1 𝜎2
𝛾1

cov𝛾1,𝜆0 cov𝛾1,𝜆1

cov𝛾0,𝜆0 cov𝛾1,𝜆0 𝜎2
𝜆0

cov𝜆0,𝜆2

cov𝛾0,𝜆1 cov𝛾1,𝜆1 cov𝜆0,𝜆1 𝜎2
𝜆1

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
, (5)

[
𝜈0,i𝑗
𝜏0,i𝑗

]
∼ 2

([
0
0

]
,

[
𝜎2
𝜈0

cov𝜈0,𝜏0

cov𝜈0,𝜏0 𝜎2
𝜏0

])
. (6)

4 MODEL ESTIMATION

To estimate the model parameters, Bayesian approaches are favored against maximum likelihood methods, which usually
involve heavy numerical integration and approximation of the first- and second-order partial derivatives.17 For a typical
Newton-Raphson algorithm to achieve maximum likelihood estimations, one would need to integrate the conditional
likelihood over the joint distribution of all random effects to compute the marginal likelihood. As a result, the computa-
tional load and complexity increase exponentially with the number of random effects, making the estimating procedure
infeasible for models with relatively large numbers of random effects.18 Bayesian approaches, on the other hand, perform
the estimation by drawing MCMC samples from the joint posterior distribution given the prior that reflects our belief
about the parameters before collecting the data.19 Various sampling algorithms can be used, including a mixture of Gibbs
sampling, Metropolis-Hastings, and Hamiltonian Monte Carlo.20 Parameter estimates and credible intervals can then be
obtained by taking the point estimates and corresponding intervals associated with the posterior, thus avoiding the com-
putational issues associated with numerical integration.21 Given flat priors and enough MCMC samples, the Bayesian
approach will yield consistent parameter estimates.22

We have devised an MCMC sampling algorithm where Metropolis-Hastings algorithms is nested within Gibbs sam-
pling. However, a better approach can be taken using the Stan statistical software, since it can better deal with the
trade-off between step size and acceptance rate by reducing the correlation between successive samples using a Hamil-
tonian evolution and target values with a higher acceptance rate than the observed probability distribution.23 Both the
Metropolis-Hastings-Gibbs sampling algorithm and Stan implementation details are provided in the Supporting Infor-
mation. The Hamiltonian Monte Carlo sampling uses improper uniform priors (uniform on (−∞,+∞)) for regression
coefficients 𝛽 and 𝛼, improper bounded uniform priors (uniform on (0,+∞)) for random effect variances 𝜎2

sub𝑗 and 𝜎2
wave,

and Lewandowski, Kurowicka, and Joe priors for random effect correlation matrix.

5 SIMULATION STUDY

To validate the proposed model as well as the estimation procedure, a simulation study was conducted. A series of
100 data sets, each with 10 000 observations (100 subjects, each subject measured at 10 waves and 10 occasions within
each wave), were generated under the 3-level location scale model with 3 covariates (Xi ∼  (0, 1), Xi𝑗 ∼  (0, 1),

and Xi𝑗k ∼  (0, 1)). The true parameter values for the 6 random effects variances/covariances are COV
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝛾0
𝛾1
𝜆0
𝜆1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

=

⎡⎢⎢⎢⎣
1.0 −0.1 0 0
−0.1 0.25 0 0

0 0 0.25 −0.025
0 0 −0.025 0.065

⎤⎥⎥⎥⎦
and COV

([
𝜈0
𝜏0

])
=

[
1.0 0.25

0.25 1.0

]
. For each generated data set, a series of 4 candidate

models were considered: a 2-level (subject and occasion level) mixed effect regression model with heterogeneous vari-
ance (MRM HV), a 2-level mixed effect location scale model (MLS), a 3-level (subject, wave, and occasion level) mixed
effect regression model with heterogeneous model, and the proposed 3-level mixed effect location scale model. The first
3 models are considered to be reduced models relative to the last one since they ignore either the clustering due to the



2114 LIN ET AL.

intermediate wave or unobserved variables in the variance.
Two-level MRM HV:

Yik = X⊤
ik 𝛽 + 𝛾0,i + 𝛾1,i waveik + 𝜀ik, (7)

𝜎2
𝜀,ik = exp(W⊤

ik 𝛼). (8)

Two-level MLS:

Yik = X⊤
ik 𝛽 + 𝛾0,i + 𝛾1,i waveik + 𝜀ik, (9)

𝜎2
𝜀,ik = exp(W⊤

ik 𝛼 + 𝜆0,i + 𝜆1,i waveik). (10)

Three-level MRM HV:

Yi𝑗k = X⊤
i𝑗k 𝛽 + 𝛾0,i + 𝛾1,i wavei𝑗 + 𝜈0,i𝑗 + 𝜀i𝑗k, (11)

𝜎2
𝜀,i𝑗k = exp(W⊤

i𝑗k 𝛼). (12)

Three-level MLS:

Yi𝑗k = X⊤
i𝑗k 𝛽 + 𝛾0,i + 𝛾1,i wavei𝑗 + 𝜈0,i𝑗 + 𝜀i𝑗k, (13)

𝜎2
𝜀,i𝑗k = exp(W⊤

i𝑗k 𝛼 + 𝜆0,i + 𝜆1,i wavei𝑗 + 𝜏0,i𝑗). (14)

The 4 candidate models were compared in terms of both mean and variance parameter estimates as well as credible
intervals. Bias, average 95% credible interval width, and average coverage rate out of 100 data sets were obtained to evaluate
model performance. The results are represented in Tables 1 and 2.

In Table 1, 𝛽 intercept, 𝛽subj, 𝛽wave, and 𝛽obs are the mean model regression coefficients for the intercept-, subject-, wave-, and
occasion-level covariates, respectively. The 4 models all did relatively well in estimating 𝛽 as can be seen from the small
bias. But they do perform different in terms of estimating the uncertainties associated with the coefficients: The 3-level
models (3-level MRM HV and 3-level MLS) produced wider and more correct intervals (1.6873/1.6993 and 1.8105/1.8039)

TABLE 1 Results from 100 simulations under the 3-level mixed effects location scale model: mean model parameters

𝛽intercept = 1 𝛽subj = 1 𝛽wave = 1 𝛽obs = 1
Model Bias AIW COV Bias AIW COV Bias AIW COV Bias AIW COV

Two-level MRM HV −0.0274 0.3973 46% −0.0005 0.3953 91% −0.0081 0.2075 17% 0.0003 0.0613 96%
Two-level MLS −0.0292 0.4050 52% 0.0009 0.4000 94% −0.0075 0.2103 19% 0.0011 0.0577 96%
Three-level MRM HV −0.0288 1.6993 98% −0.0018 0.3976 95% −0.0006 1.8039 97% −0.0019 0.0510 98%
Three-level MLS −0.0257 1.6873 99% −0.0014 0.3989 93% −0.0016 1.8150 95% −0.0010 0.0404 94%

Abbreviations: AIW, average 95% credible interval width; COV, 95% coverage rate out of 100 simulations; MLS, mixed effect location scale model; MRM HV, mixed
effect regression model with heterogeneous variance.

TABLE 2 Results from 100 simulations under the 3-level mixed effects location scale model: variance
model parameters

𝛼intercept = 0.3 𝛼subj = 0.2 𝛼wave = 0.1
Model Bias AIW COV Bias AIW COV Bias AIW COV

Two-level MRM HV 0.6109 0.0608 1 −0.0609 0.0567 19 −0.0096 0.0712 16
Two-level MLS 0.5350 0.1499 5 −0.0730 0.1439 49 0.0071 0.1106 17
Three-level MRM HV 0.2410 0.0605 5 −0.0004 0.0570 47 −0.0402 0.0672 12
Three-level MLS −0.0038 0.8596 97 0.0040 0.2081 95 −0.0155 0.9114 99

Abbreviations: AIW, average 95% credible interval; COV, 95% coverage rate out of 100 simulations; MLS, mixed effect location
scale model; MRM HV, mixed effect regression model with heterogeneous variance.
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for the intercept and wave covariate compared with the 2-level models (0.4050/0.3973 and 0.2103/0.2075). This is due to
the fact that neither 2-level MRM HV nor 2-level MLS accounts for the possible unobserved variables at baseline or the
intermediate wave level by including random intercept or random wave effect(s), which in turn overstates the certainty
around the point estimates. Although the point estimates in all 4 models show small bias, only the 3-level models yield
credible intervals closer to the correct 95% level.

In Table 2, 𝛼intercept, 𝛼subj, and 𝛼wave are the corresponding regression coefficients associated with the intercept-, subject-,
and wave-level covariates in the log-linear representation of the error variance model. All 3 reduced models have 𝛼intercept

estimates biased upwards with narrower credible intervals and insufficient coverage. One explanation is that, when one
omits the wave-level covariates or random scale effects (or both) in the log-linear error variance model, all the variations
unexplained by the existing covariates have to be absorbed by 𝛼intercept, which makes 𝛼intercept biased towards the population
averaged effect rather than subject-specific effects. Leckie12 had similar findings regarding the variance model intercept
in a 2-level random intercept location scale model. In terms of 𝛼subj and 𝛼wave, since neither MRMs included random scale
effects, they produced narrower and incorrect credible intervals. Also, the 2-level MLS undercovers 𝛼wave due to the fact
that it failed to include a random scale effect at the wave level.

In summary, none of the reduced models are comparable with the 3-level mixed effects location scale model in terms
of unbiasedness and correct coverage. If one were to analyze a 3-level structure data sets where both location and scale
random effects are present, using the reduced models would yield invalid statistical inference and arrive at possibly false
positive results.

6 APPLICATION TO ADOLESCENT SMOKING STUDY

The proposed Bayesian 3-level mixed effect location scale model was applied to the EMA adolescent smoking study intro-
duced in Section 2. For comparison purposes, results from a 3-level mixed effect regression model, as well as a 3-level
mixed effect regression model with heterogeneous variance, were also listed. The focus was on identifying risk factors asso-
ciated with lowered and unstable mood assessments, with an special interest in separating the within-subject within-wave
effect from the between-subject and within-subject between-wave effects of smoking events vs random prompts. The
outcome is PA, which is a measure of a subjects' positive mood as described in the motivating example section. The
occasion-level covariate smk (1 if the response is from a smoking event or 0 if from a random prompt) was decomposed
into subject-, wave-, and occasion-level variables as described earlier since we are interested in identifying the most sig-
nificant level of smoking effect. Wave is a continuous variable with values from 0 (baseline) to 6 (6 years after baseline); to
facilitate computation, we made one unit equal to 5 calendar years so that it takes values from 0 to 1.2. In the Supporting
Information, we have included R code to simulate a similar 3-level data set as well as run the Stan program from R.

Results are summarized in Table 3, for both mean and variance models. Since parameters were estimated using a
Bayesian approach, Hamiltonian Monte Carlo samples were obtained from the posterior distributions for all parameters.
The point estimates were obtained as the mean of the posterior distribution for regression coefficients 𝛽 and 𝛼 (since their
posterior distributions are approximately symmetric) and as the mode of the posterior for random effect variances 𝜎2

(since their posterior distributions are skewed and mode would be most similar to the maximum likelihood estimations if
one were to do likelihood estimation methods). The 95% credible intervals were bounded by 2.5% and 97.5% quantiles of
the posterior for all parameters. The first 2 columns list the parameter estimates and corresponding credible intervals of
the 3-level MRM, which assumes homogeneous error variance and includes random subject location intercept and slope
as well as random wave location intercept; the third and fourth columns list results of the 3-level MRM, which has the
same random effects specification, but allows the error variance to depend on observed covariates; the final 2 columns
list results of the proposed 3-level MLS, which, in addition to the random location effects, also includes the random scale
effects and further allows the error variance to depend on both observed and unobserved covariates. The top 2 panels list
regression coefficients for the mean 𝛽 and within error variance 𝛼, with 𝛼 on the natural log scale; the third panel lists
the variances and covariances of the random effects, both for location and scale; and the bottom lists the model selec-
tion criteria, the expected log pointwise predictive density, or elpd, for all 3 models. elpdLOO is a measure of how well the
model fits the data controlling for the model complexity and is often used for Bayesian model comparison.24 According
to Vehtari et al,24 elpdLOO is preferred over deviance information criterion since it evaluates the likelihood over the entire
posterior distribution, works for singular models, and is invariant to parametrization. Higher elpdLOO indicates better
model fit adjusting for the model complexity.
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From Table 3, all random effect variances in the 3-level MRM, 3-level MRM HV, and 3-level MLS are estimated to
be greater than 0. But since the variance parameters are bounded, a preferred way to judge the significance would be
to compare the elpdLOO of the current model with those without corresponding random effects. The model selection
criteria elpdLOO strongly favors the 3-level MLS relative to either the 3-level MRM or 3-level MRM HV. This provides clear
evidence that the homogeneous error variance assumption is violated, and observed information is insufficient to explain
the amount of variation either at the subject level or at the wave level. Subjects do exhibit heterogeneity in terms of both
mood and mood variation, and the heterogeneity in mood variation can be explained by some unmeasurable variables that
are absorbed into random subject and wave effects. Specifically, subjects' mood variation differs significantly at baseline
and changes with different rates over time. The negative covariance between the scale intercept and slope indicates that
subjects with more erratic mood at baseline exhibit greater mood stabilization across time, although this is not quite
statistically significant as the credible interval includes zero.

When comparing the mean effects 𝛽 among the models, all 3 models give similar results except for smkobs, where the
2 MRMs yield a larger marginal effect compared with MLS. For all 3 models, smkobs and wave are seen to be statistically
significant. For smkobs, the point estimate is positive with 95% credible interval not including 0. This suggests that if we
compare the same subject at the same wave, the subject tends to have better mood after a smoking event compared with
after a random prompt. For wave, the point estimate and credible interval are both positive, indicating that across waves,
subjects' mood tends to improve. Although the 95% credible interval contains 0, the results for smksubj and smkwave suggest
that, for different subjects, heavier smokers tend to have higher mean mood; for the same subject across different waves,
his mood tends to be better after a smoking event compared with a random prompt. Similar results among the 3 models
suggests that, if the main interest is in the mean effects or changes in the mean, the ordinary MRM, MRM HV, and MLS
all provide valid results.

When comparing the variance effects 𝛼 among the models, the 3-level MRM assumes homogeneous error variance
and thus only provides an intercept estimate; the 3-level MRM HV, on the other hand, has a log-linear representation of
the error variance and thus provides a point estimate and corresponding credible interval for each observed covariate.
Additionally, the 3-level MLS further permits unobserved variables to affect the error variance by including the random
scale intercept and slope; thus, the 3-level MLS provides 𝛼 for covariates as well as variances of the random scale effects.
Results and conclusions from the latter 2 models differ, as can be expected based on the simulation study. Since the
3-level MRM HV does not include the random scale effects, the point estimates for 𝛼 might be reasonable, but the credible
intervals will likely be too narrow. As can be seen from Table 3, the effects of male, smksubj, and smkwave all tend to be
significant by the 3-level MRM HV, but not the 3-level MLS, due to the narrow credible intervals of the former. These
positive effects are likely to be false positives since the 3-level MRM HV tends to underestimate the uncertainty associated
with 𝛼. Based on the 3-level MLS, smkobs and wave have negative effects on the variance and are seen to be statistically
significant. For smkobs, if we compare the same subject at the same wave, the subject tends to have more consistent mood
after a smoking event compared with a random prompt. For wave, subjects' mood tends to become more consistent across
time, as can be depicted in Figure 1. Although the 95% credible interval contains 0, the results for smksubj and smkwave

suggest that, for different subjects, heavier smokers tend to have more stable mood; for the same subject across different
waves, his mood tends to be more stable after a smoking event compared with a random prompt. The dramatic differences
in the results of 𝛼 among the 3 models indicate that neither MRMs provide adequate information or valid statistical
inference if the main interest is centered around the variance effects or change of variation, in which case one should
consider the proposed location scale model.

Data from 4 representative subjects were plotted to illustrate the subject and wave heterogeneity. In Figure 1, subject
1 was measured at all 6 waves while subject 2 was measured only at the last 2 waves. Subject 1 entered the study with
relatively bad and unstable mood, but over time, his or her mood became better and more consistent. At the last wave,
he or she provided very consistent high PA responses. This is consistent with the random subject scale effects estimates
(−0.41,−3.64), where the slope effect is estimated to be far below the population average. Subject 2, with the random scale
slope estimated to be −0.25, showed a somewhat similar pattern: He or she entered the study at wave 5 with unstable
mood assessments but became more consistent at wave 6. In Figure 2, subject 3 was measured at baseline and the last 3
waves, while subject 4 was measured at baseline and the last 2 waves. Subject 3 entered the study with relatively stable
mood and then remained to be consistent throughout the study. Alternatively, subject 4, who entered the study with
erratic mood assessments, then remained erratic until the end, which can also be depicted from his or her random scale
intercept estimate (1.36, 1.52), which is above the population average. These 4 subjects showed distinct patterns in terms
of baseline mood variation as well as mood variation trajectories over time.
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7 DISCUSSION

In this article, we have extended the existing 2-level mixed effects location scale model proposed by Hedeker et al5 to a
3-level structure and additionally allowed for multiple random location and scale effects. The 3-level mixed effect loca-
tion scale model allows covariates to influence both the mean and within variance of the outcome and thus relaxes the
homogeneous error variance assumption. This model also includes random effects in both the mean and variance model,
allowing variation in the outcome that cannot be fully explained by the covariates. The multiple random effects at the
subject and wave levels allow variation in outcome trajectories among subjects and across waves and provide more real-
istic assumptions as opposed to simpler random effect models. The magnitude of the random effect variance can help to
reveal the degree to which heterogeneity is due to subjects and/or waves. Markov chain Monte Carlo sampling methods
were used to estimate the model parameters and to avoid numerical computation problems caused by the large num-
ber of random effects. Our example using the adolescent smoking data showed that subjects experience systematic mood
variation at baseline as well as change over time.

The proposed model can be generalized to various research settings where the interest is in both the mean and varia-
tion of the outcome and where multiple levels of data clustering are present, such as smoking cessation25 or substance
addiction26 studies. Since EMA studies produce relatively large number of observations per subject, the location scale
model with both mean and variance modeling not only relaxes the constant error variance assumption but also permits
more valuable information in terms of the outcome and subject (wave) heterogeneity. Furthermore, the proposed method
can also be modified and used in a non-EMA setting where data are collected from a series of hierarchical units instantly.
For example, in clinical settings, glucose levels are often measured multiple times per day for type II diabetes patients at
possibly multiple waves.27 The research interest often involves comparing the possible trajectories as glucose levels evolve
with or without insulin pumps and thus infer the effectiveness of insulin pump therapies.

In this article, we only considered the possible effects of covariates on the within variance. However, one can also expand
our model to additionally allow covariates to influence the between-subject as well as the within-subject between-wave
variance.28 To do this, we need to include another set of between variance models. Specifically, let 𝛾 i denote the random
subject location effects andΣ𝛾i be the variance-covariance matrix of 𝛾 i. Then the model for the diagonal elements inΣ𝛾 can
be expressed as exp(Xi×𝜂), where Xi is the set of subject-level covariates that have an effect on the between-subject variance
and 𝜂 is the corresponding regression coefficient. Similarly, we can include exp(Xi𝑗 ×𝜌) to model the diagonal elements in
the within-subject between-wave covariance matrix. Leckie12 discussed the option for modeling the 2 × 2 between-subject
covariance matrix by specifying a log link function for the variances and inverse tanh link for the correlation. But it is
trickier to extend well to higher-order covariance matrices.

Our current work focuses on continuous outcomes only. Future work could therefore extend the current model and
estimation framework to ordinal outcomes as well as count outcomes, by including a scale model representation for the
overdispersion.29 Since ordinal and/or count outcomes generally provide less information compared with continuous
outcomes, one might need to collect more data points to achieve relatively equal statistical power.
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